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A~~TRACT

The paper Is concerned with giving sufficient conditions that in

the non-linear boundary-value problem

u ”(x) + {q(x) + G(x ,u(x), X) }u(x) = 0

u(0) = 0, u( l) = 0 or u ’(l) = 0

there should be no secondary bifurcation , i. e. th a t , given a branch

of solutions (u , X) bifurcating from the trivial solution , there should

be no further bifurcation on that branch . Sufficient condition~s on G

are given which include , for example , Kolodner’s problem of the

motion of a heavy rotating string .
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SIGNIFICANCE AND EXP LANATION

We give a typical physical example where the mathematical analysis in this

paper is relevant. The simplest model for the buckling of a rod under an axial

load is the classical Euler theory , in which the buckling load is given by the

eigenvalue of a linear differential equation.

A more realistic model leads to a nonlinear boundary value problem in which

the buckling load is given by the eigenvalue of a linear problem derived from the

nonlinear equation — a bifurcation point. In contrast to the linear theory, the

nonlinear theory also enables us to follow the behavior of the rod after buckling

occurs. Under certain circumstances it is possible for a structure to buckle; then,

when the deformation due to buckling has progressed so far, the structure may buckle

a second time. When the behavior of the system is governed by a second order non-

linear differential equation, the present paper gives conditions under which this

secondary buckling cannot occur.

The responsibility for the wording and views expressed in this descriptive sununary

lit~s with r~tRC, and not with the authors of this report.
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NON-LI N EA R STURM-LIOUVI LLE PROBLEMS

WITH NO SECONDA tW BIFURCATION

J. B. McLeod & C. A. Stuart

I . Introduction

Let G (O , l ) X I R X I R — fl~ be a smooth function and let G1 denote the A - th partial de-

rivative of G . We consider the non-linear eigenvalue problem

u ’(x) + q(x)u(x)  + u(x)G(x,u(x),)) = 0 )) ( 1)
u(0) = u(l) 0 )

and simultaneously the problem in which the boundary condition u(l) = 0 is replaced by

u’( l) = 0. We suppose that q~ 0,l) — il~ is a continuously differentiable function .

Since both the function u and the constant ~ are unknowns in (1), we regard a solu-

tion o f ( l )  as a pair (u , X) C2(O,l) fl C’[O,l] X ll~. We wish to give conditions on the function

G which will imply that, for any solution (U 0, X0
) of (1) with u0 — 0 , there Is a neighbour-

hood of (u 0, X 0) in C1[0 , l] x fl~ such that all the solutions of ( 1) lying inside this neighbour-

hood form a single smooth curve which can be parameterized by X

A result of this kind can be obtained directly from the implicit function theorem as

follows . Let X be the Banach space consisting of the set {u C1[O ,l] : u(0) 0) together

with the usual norm for C’[O ,l]. Define an operator A X X  fl~ -ø X by

A(u , X ) (x)  = g(x ,y) [ q(y)u(y)  + u(y)G(y, u (y), X) l dy

where g is the Green ’s function for the problem

-u ”(x) h(x) , u (0) = ufl) 0 (respectively u ’( l) = 0)

Let us assume that for each X €1 R , A( •  , )
~):X - X is a completely continuou s ( i . e .  continuous

and compact) operator . This is certainly the case if q is continuous on [0 .11 and G is con-

ttnuous on [0 ,1) )( U~ X IR , but it is also tru e even if q and G have mild singulari t ies at

x = 0 . With this notation , the problem (1 ) is equivalent to

u + A (u ,X) = 0 for (u ,k) XX IR . (2 )

Sponsored by the United States Army under Contract No. DAAG29-7~’- C-0024.
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Supposing that (u 0, )
~0) c X X  IR is a solution of t Z ) ,  we shall be able to invoke the

implicit function theorem to yield the desired conclusion provided tha t we can show that the

~tr.a’ mapping I + A (u0,)0) X —  X has a bounded inverse. We use A
~

(u 0, )
~0

) to denote

Y~# ;het derivative of A at (U
0, 

)~~ ).  Since A
~

(u o, 
~~ 

is a compact Unear operator (by

the compactness of A) ,  I + A ( u 0, )~0) has a bounded inverse provided that I + A u 0, )
~0

) X-.X

is one-to-one. Proving that I + A ( u 0, X0) : X — X  is one-to-one is equivalent to proving that the

boundary-value problem

v ” (x) + q(x)v(x) + v(x){G (x ,u0( x) , ).
0

) + u0(x) G 2(x ,u0
(x ), ).

0) )  = 0
) ( 3 )

v(0) = 0 , v( l) = 0 (respectively v’(l) = 0) J
has only the solution v i 0. The aim of the paper is to give conditions on G which ensure

that this is the case for every solution (u 0, k0) of (1) such that 0

Of course , we may also consider the same problem for solutions of (2) of the form (0 , ).).

This Is the problem of bifurcation of non-trivial solutions of (I)  from the line ((0 , k ) c  X X U ~:k U~J

of trivial solutions. In keeping with what has been said above, bifurca t ion cannot occur at a

value )~ = which is not an eigenvalue of (3)  with u 0 
I 0. Furthermore it is well-known 11)

that at the elgenvalues of

v”(x) + q(x)v(x) + v(x) G(x,0,K) = 0

v(0) = 0, v(l) = 0 (respectively v ’( l)  = O)J,

bifurcation does indeed occur provided that the transversaltty condition (d) of Theorem 1.7 of

[1] is satisfied . In fact , in a neighbourhood of the bifurcation point in X X IR , the set of all

solutions of (1) consists of two simple curves which intersect only at the bifurcation point .

One of these curves is a section of the line of trivial solutions and the only trivial solutic~

on the other curve is the bifurcation point. It is a corollary of our result that , under our

hypotheses , this curve of non-trivial solutions can be continued to inf in i t y  in X x IR. Further-

more there is no branching from this curve ( i . e. no secondary bifurcat ion )  and the curve can

be parameterized by K . The conditions under which we establish these results are consider-

ably more general than those formulated previously which seem restricted either to autonomou s

- 2 —
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equations (2 1 or to problems with small non-linearit ies [3).

- 
Our method is to compare (3) with two other problems , one being ( I )  and the other a

specially constructed linear problem the number  of nodes of solutions of which can be related

to the number for u 0. The Sturm comparison theorems then gwe (from each comparison ) informa-

tion abou t the number of nodes of a solution of (3) ,  and it  this information Is self-contradictory,

we can conclude tha t (3)  has only the trivial solution.

Before giving our result we remark that our method will apply to problems not of the form

(1), for example to problems in which u’(x) appears explicitly in the differential equatIon. For

this reason we have arranged the proof so as to show what must be done in order to construct the

third comparison problem, and in so doing we show also tha t our result is more or less the best

possible one obtainable by our methods for problems which have the form (1) .

I. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~



2. The main theorem

Theorem. Suppose that (u0,).0
) XX IR is a solution of (I) with U

0 
0. Then the boundary-

value problem (3) has only the solution v 1 0 in X provided that G has the following form:

fXh(y)dy

G(x,p,X) = f(x) F(p e , ) .) for x~ (0 , 1) and p, ) . c  P ( 4 )

where F : I R X I R — IR is any C’ function such that p F
1
(p,X0

)< 0 for all p * 0, f:(0,ll-. IR

is any positive C2 function, with 1(x) bounded from zero for x (0, Ii and with

f x f(x) dx <j o , h: (0, 1) — P is any C2 solution of the Ricc ati  equation h~ - h 2 
= q in

(0, 1), with the restriction that h( l) < 0 if we have the boundary condition u (l) 0 ,

q: ( 0, 1~ -. P is any C function with f x l q ( x) I d x  < ~~~, and where we have the add i-
tional inequality, 0

! f _ SIZ f. Z 
- f

_ 3/2(f.h + 1”) + Zf ~~’12h > 0  throughout (0 , 1) . (5)

Remark. 1. The conditions allow the functions 1, h and q to have singulari t ies at 0 . This

is essential because there are relevant exam ples in which this arises , In particular Exampl e 2

which we discuss later. The singularities can be handled analytically bucause the boundary

condition at 0 has the fo rm u( 0) = 0; and if we take problem (1) with the boundary cond ition

u(1) = 0 rather than with the alternative ull) = 0, we can allow singularities in f , h , and q

at 1 as well. We have not bothered to make this extension.

2. WhIle the theorem is a theorem about the non-existence of non-trivial  solutions of

a certain boundary-value problem, the introduction has pointed out the relevance DI this for

secondary bifurcation , and it should therefore be remarked that the conditions of the theorem

are sufficient to guarantee that the operator A of the introduct ion is com pletely continuous.

This is done in an appendix to the paper, and it will be seen there that  the conditions are not

only sufficient but also close to being necessary .

3. The proof and truth of the theorem remain unchanged if we generalize F so as to

allow zeros of F1(p, 
~~ 

for iwlated values of p . If F1 
1 0, the problem of course ceases

to be non-l inear.

_ _  _ _ _ _  -~~~~~~



;. It is possible to construct a theorem in whi::~. the ineq..~ l * t y  ~~ 1’p .  ~~~
) 0 is

reversed to p F1(p , k 0
) > 0  and the inequality SI is also reversed . The -~~p ar t son s  ir . ~~

proof that follows are then reve,sed and a contradiction can be obta. .ec r~~ ± as before . ‘.\e

leave the necessary modifications of statement and proof to the reader .

We make a final remark on generalizations at the er.d of ~‘;e proo f of the theorem .

S. As a consequence of Remark 1 , it becomes part of the proof of the theorem to discuss

the singularities and show that they can be handled . We do th i s  in two simple lemmas which

we state now and prove at the conclusion of the proof of the theorem.

Lemma 1. Let h be as in the statement of the theorem. Then, as x 0 , either h i x )  s o(x~~)

X

h(x) - -x ’ arid xe 1 converges to a finite limit.

Lemma 2. Let u 0 be as in the statement of the theorem. Then u0 has only a finite number

of zeros in (0,1).

Proof of Theorem. Setting

G(x ,p, K) q(x) + G(x ,p, K ) for x~ (0 ,1) and p, K (  ER ,

we have that u0 satisfies the equation

w”(x ) + G(x ,u 0( x), \ 0)w(x) = 0 for 0 < x  < 1

We suppose that v ~ 0 is a solution of (3) in X and show that this leads to a contradiction .

Since v satisfies the equation

w”(x) + ~G(x ,u 0( x) , k 0 ) + u 0(x) G?(x ,u O( x), k O
) )w(x) = 0 for 0 <x <1

and since
f

X
h fX h

u0(x) G2(x,u0(x),k0) = f(x)u0(x)e 11
(u 0(x)e ~~~~~~~ 

< 0

by our hypotheses (with equality only when u0(x)  0) ,  it follows from the Sturm comparison

theorem that u 0 vanishes at least once strictly between any two consecutive zeros of v

If we have the boundary conditions u 0( 0)  u 0( l )  = 0 and u 0 has no zeros in (0 , 1),

this already leads to a contradiction since v will have zeros at 0 and 1 .

Let us now suppose that  u 0 has n - i  zeros In (0 .1) when’ n > 2 and that u 0 satisfiesI.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~JT~~
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u0(0) = u0(1) = 0. We denote the zeros of u0 by a. where 0 a
~ 
‘- a1 < ... < a~~1 ~. 1. By

comparing (3 )  with another linear problem we shall show that this again leads to a contradiction .

To obtain the desired equation for comparison , let a ,Ø t C2( 0 , I~ . and consider , In (0 . 11 ,

4 = a u 0 + ~ u~

Then

4” = a ’u
0 

+ (Za ’ + ~~‘)u ~ + (a 4 Zp ’)u~ + ~

= {a” - (a + 2~~’)G - 
~ 

G 1)u 0 + (Ia ’ + ~~
“ - 

~~ G - 0 u0 G 2 )u ()

Hence, provided that

- (a + 2~’)G - ~ C1 ) = a{Za’ + j i - - ~ u 0 G 2 J, 6)

we see that 4 satisfies the equation

$ “ + { G + u 0 G 2 - Ze’ + 0 ” ) 4 0  (7)

provided that ~ does not vanish in (0 ,1).

Now the condition (6) can be regarded as a partial di ffe rential equation for G , If we

regard the arguments in C , i.e. x and u~, = p, as the independent variables and a and ~

as given functions of x . Indeed , it is a first-order linear equation with the general solution

G(x ,p, k
0

) = (~~) - ( a ) 2 
~ +~~

p e~~~ ~ ~~ ) (8~

where F: IRX fl~ — ~R is an arbitrary function , and we observe that the part icular G = q + C

which arises from G as given in the statement of the present theorem is indeed of the form (8)

if we take H
= f~ 1/Z 

, a = f -l/2 h. ( 9 )

(We note that a and ~ so defined satisfy the conditions so far used in the analys is ,  tha t

a ,~~ iI C2(0 ,lJ and ~ > 0  in (0 , 11.)

The proof of (8) is just  undergraduate mathematics ,  but for the purposes of the proof of

the present theorem we are in any case interested in the converse, that if C is of the form given 
. 

- 
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by (8) ,  and in particuldr if G is as given in t he  s tatement of the present theorem , then (6 )

holds (with  a and 13 given by ( 9 ) )  and so ç satisfies 17) ,  and this converse is proved ) u s~ by

differentiating ( 8 ) .  The Sturm co nparison theorem can now be applied to compare zeros of v

and • , provided that 20’ + 13 ’  is of constant sign,  and for a and 0 of the form ( 9 i ,  this

Is achieved by equation (5) ,  which just  states tha t

2 a + 1 3  > 0 .

Hence between any two consecutive zeros of 4 in (0,1) there must lie at least one zero of v.

(This statement has to be suitably interpreted if there are intervals  in which Za’ + 0” l 0 , but

we leave this to the reader .)

We are now ready to achieve the required contradiction. We know that U
0 

has precisely

n-i  zeros in (0 ,1), and that  consequently, from the comparison between u0 and v , v has at

most n -2  zeros in (0 ,1). ( For if v has n-I interior zeros at b1,... ~~~~~ then u
0 has at

least one in each of the n intervals (0,b1,(b1,b2
),.. . ,(b 1, l ) . )  But u~ has opposite signs at

consecutive zeros of u0 (it is part of the proof of Lemma 2 that u~,(0) * 0 ),  and so • chan ges

sign at least once in each of the intervals (a1,a2),(a2,a3),... ,(an i , l) of u0 . (Since it is

possible that 13(0) = 0 , we have to consider the interval (0,a1) as a special case.) Thus 4

has at least n - I  zeros in (0 ,1).

In fact , ~ has a further zero , either at 0 or in (0 , a1). There are two cases to con-

sider , depending upon whether h(x) = o(x ”1) as x L  0 or h(x) —

In the first case , we can suppose wit hout loss of generality that u~ (0) > 0 , u 0 > 0 in

(0 ,a1), u~(a 1
) < 0 . Then 4(a1

) < 0 , while , as x 0

4(x) = f _ l/2(x) ( h (x) u0(x) + u~ ( x ) J ,

which is certainly positive for sufficiently small x if h(x)  0(x 1) as x 0 . Hence 4

has a zero in ( 0 ,a1).

If h (x) -x~~ as x j  0 , then

4( x) = C / (x) {h(x) u 0(x)  + u~ (x)  }

= f~1/2() ( -x ~~[x u~ (0 ) + 0(x ) )  + u b ( O )  + 0(1)

0(1) 

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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since f1/
~ is bounded . Hence 4(0) 0

The comparison between v and ç o.v assures us that v ~-~js .jt least n-I zeros i

(0 ,1) , andsince weestabhshed earlier  that  v had at n~u . t  n -~ zeros in (0 , 1), the req u1ret ~ contra-

diction is obtained.

We deal finally with the case where u0 has ~
.-l zeros in O , I ) ,  with n >  1, and the

boundary conditions are u0(0) 0, u~(l) = 0. (In the case n = 1 the argument that follows has

to be suitably modified and this is left to the end.) We note as before that v has at most

n-.2 zeros in (0,1). The function 4 is constructed as before and has at least one zero in each

of the intervals [0,a1), 
(a 1, a 2 ) , . . .  , (a 2,~~~1). If we can show that $ slso has a zero in

(an 1 ,1], we can make the comparison with v and obtain a ::ontrud~ ::i~ ’ as before. To show

the existence of this last zero, we suppose without loss of generality that u~(a 1) > 0 , u0 > 0

in (a~~1, l1, with u~ ( 1) 0. Then 4i(a~~1
) > 0 while 4(1) < 0  since h( 1) 0 , ~inc. this gives

the required result .

If n = 1, there is no need to introduce the function 4 . Since u0 
has no interial zeros,

neither has v , and wn may assume u 0(x) > 0 , v(x) > 0 for x ~ (0 , 1). Then

2u~(x) v(x) - v ”(x) u 0(x) = u 0(x)  v(x)

and on integration

[u~(x) v(x) - v’(x) u0(x)]~ < 0

which contradicts the boundary values for u0,v.

Remark. If we do not assume G of the form (4) ,  it is s t i l l  possible to consider • au ~

where, a,13 are suitable functions of x , and to construct a dif ferent ia l  equation for 4 of the

form

4” + A4’ + B~ = 0

for functions A ,B which depend on x ,u 0 , a , 13, G ,q .  By the stan dard t ransformation

- i/if A dx

we obtain an equation of the form

4 ’ + C~~= 0  8

_ - -~~~--~~~~~~~—-—- ,.—~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _ _ _ _  - - -

I

I . for ~ , and this  can be used for comparison wi th  the equation for v provided that C satisfies

- a certain inequality. This inequality ~s to be regarded as a condition on C . but in th i s  degree

of generality seems to be too complicated to be made much of

- 9 -
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3. Proof of Lemma 1

If z(x) satisfies the equation

z ’ + q z = O , (10)

then it is a standard result (and easily proved) that  h = -z /z satisfies the Riccati equation

h’ - h 2 = q ;  ( 11)

and , conversely, every solution of the Riccati equation can be obtained in this way. Further ,

one solution of (10), z
1 say, can be obtained by solving the integral equation

z1 = x - f (x - t) q(t) z1(t)dt

by iteration, the iterative process converging, at least for x sufficiently small , because of

the assumptions on q; and this solution has the asymptotic behaviour as x i 0 that

z 1(x) — x, z~(x) 
— 1

and consequently the corresponding function h satisfies

h(x) — ~~~ . (12)

The full solution of (10) can now be given , at least for x sufficiently small , by the

formula

z = Az 1 + 8z1 ~: 
{z1(t)y

2 dt

where A and B are arbitrary constants and 6 is a fixed positive number sufficiently small

that z1 does not vanish in (0 , 6] . If B = 0, then z is a multiple of z1, and we have al-

ready seen that then h(x) — -x ’ . If B ~ 0, it is an easy calculation , using the asymptotic

behaviour of 
~l’ 

to check that h(x ) = 0(x
1), as required by the statement of the lemma.

If h(x) . -x~~, then for x sufficiently small we can divide (11) by h and integrate to

obtain

log h - f h(t)dt = f ~~~ dt ~ constant

the integral on the right existing because of (12) and the conditions on r- , The proof of the lemma

is then com pleted by taking exponentials of both sides and letting x 0

-10-
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4. Proof of Lemma 2

Since the differential equation satisfied by u 0 is singular only at 0 , we see tha t 0

is the only possible limit point for an infinity of zeros of u0, if such exists. Further, since

~ C
1[0,1J, if 0 is such a limit point, then u~ (0) = 0. It will therefore be sufficient to show

that u~(0) * 0.

Suppose then for contradiction that u~(0) = 0 . Integrating the equation for u0, we have
f t

u~(x) = ~
1;x {q( t) + f(t) F(u0(t ) e ~ 

h
,)~O))uO

(t) dt

the integral existir,g because u0(t) = Oft ) as t~ 0 and

t f(t)dt <~~, f t j q ( t ) J d t < ~

(Note that, from Lemma 1, and for t c [0 ,1],

f t
1u 0(t)  e ’ < K11 u0(t) / tl  < K 2

for suitable constants K1, K2 .)  If now, for some 6 > 0  ,

M = sup lu’0(t) I
t [0 , 6]

• then we have
6

M < M f  {~ q(t)~~+ K f ( t ) } t d t , (13)
0

where

K = sup )F (u 0( t) e 
‘>‘

~~~~~t e  [0 , 1)

and cleariy ( 13) implies M = 0 if 6 is chosen sufficiently small . Hence u0 
£ 0 in (0 , 6]

and so throughou t f 0 , 1).

— 1 1 —
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5. Two examples

Example 1. Suppose that q 0 . Then we may take h a 0 and C then has the form

C(x,p,i) = f(x) F(p,X),

where F is an arbitrary smooth function such that p F1(p, X 0
) < 0  for all p # 0 , and where

is any C2 function on (0 ,1], bounded from zero and with

f~~x f( x ) d x < a

and

.}f ~
2_ ff” > 0  in (0 ,1).

A particular case of this result is due to Professor D. Henry. Let f a 1 and F have

the form

F(p, k) = g(p, )..)/ p

so that the equation under discussion is

u” + g( u ,X ) = 0

If g(p, X), regarded as a function of p , is C2[0 ,l], with

g(0 ,X) = g(l ,X ) = 0 and g”(p, X ) <  0 for 0 < p  < 1

and if we are interested in solutions u for which 0 < u  < 1  , then , for 0 < p  < 1

p F 1(p, X) = g’(p, k) - 
g[p,X)

= ~ - (pg ’(p, X) - g(p, X )}

= ~ g”(~~,X)/ p ( 0 <  ~ < p )

< 0 ,

which is the required condition on F

Example 2. Suppose again that q 0 . We may take h(x) = -x 4 to satisfy the required

Riccati equation , and it is easily checked that (5)  is satisfied if we take 1(x) = x 1. A pos-

sibl e choice for F satisfying the requisite conditions is

F(t , >~) = X( l + t 2 )
_ h/2 , x > 0

-12-
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This leads to

G(x,p,~ ) = 

(1+p~/x~~
1
~ 

= 

(x2+p2)1/2

and the corresponding equation is

Xu
~~

“ + 
2 2 1/2 

= 0 ,
(x + u )

which has been discussed by Kolodner (4] as a model f or the motion of a rotating string.

Appendix

Here it is our object to prove that under the conditions of our theorem the operator

A: X x ~ — X, defined in the introduction, is completely continuous.

Let

Lu(x) = f  g(x, y) u(y)dy

where g is the Green ’s function defined in the introduction. By the Ascoli-Arze 1~ theorem ,

it is easy to check that L: L ’(o , 1) -. X is a com pact linear operator. For u c X, let

Q(u) (x) = q(x) u(x) for x >  0

and

R(u , >~) (x ) = G(x, u(x), X) u(x) for x > 0

Then it will be sufficient to prove that Q: X * L ’( O , 1) and R: X X F — L’ (O , 1) are bounded

and continuous.

Now , for u c X ,

Iu(x)tsup 
x < sup Iu ’(x) I ,

0 < x < l 0 < x < 1

and so

f Jq(x) u ( x ) I d x < ( sup Iu ’(x)I)f x I q ( x ) ~ dx ,
0 0~~x~~l 0

-1 3—
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proving that 0: X * L’(0 , 1) is a bounded linear operator.

f
X

h f h
- Also, from Lemma 1, xe 1 is a continuou s function of x on (0 , 1), and lim xe

x t O
exists. Thus

f

x
h

N(u)(x) = u(x) e x
f h

defi nes a bounded linear operator from X into CE O , 1], and consequently F(u (x)e I X)

• ‘ defines a bounded and continuou s mapping of X x F  into C[0 , 1) . Setting M (u) (x)  = 1(x) u(x)

for x > 0 and repeating the argument given for Q, we see that M: X * L ( 0 , 1) is a bounded

linear operator. Since

f h

G(x , u(x), X) u(x) M(u ) (x)  F(u(x) e 1 
>~)

we deduce R: X x F -. L’(0 , 1) is bounded and continuou s, and the required result is proved .
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